

Mascot Distiller 2.8 ships with 14 different reports for analysing and exporting your quantitation results. These include reports such as Analysis of Variants (ANOVA), clustering reports such a hierarchical, K-means clustering and Principal Component Analysis. Standard reports such as the Volcano plot, box-plot are available and there are table exports which make it easy to get your data out of Distiller and into 3rd party packages such as Excel, R or Perseus from the Max Planck institute.

These cover many use cases, but we can't cover every possible analysis type ourselves and you may have some specific requirement that calls for a custom report.

In older versions of Distiller, reports were written in XSLT – an XML transformation language. This was powerful, but not commonly used and without access to many of the features you might need when creating a report.

In Mascot Distiller 2.8, reports are instead written in Python. Distiller ships with it's own embedded copy of Python with many useful libraries for data analysis.

Each report is comprised of two files – the Python report source file, and an XML file describing the report inputs and defining any Wizard to be displayed in the Distiller GUI.

Select Python interpret	ter		X
+ → · ↑	📜 - Masc > python-3.6.5-embed-win-amd >	~ 0 ,2 s	earch python-3.6.5-embed
INSTALL YOL Organize - New fol	der		=· 🔟 🕜
	Name	Date modified	Туре
• L.g. VISUd	DLLs	31/10/2023 22:36	File folder
Install Dis Documents	💴 Lib	31/10/2023 22:37	File folder
	tcl	31/10/2023 22:37	File folder
Sot the ID > Music	Python	01/02/2019 11:00	Application
	🔀 pythonw	01/02/2019 11:00	Application
Python.			
> 🟪 Local Disk (C:)			
N des des des de 193	-		_
File	name: python	 Executables 	8
Python 3.6 Selected Interprint		Select Interp	reter Cancel

With a bit of knowledge of Python and the Mascot Parser library therefore you can write your own reports for use in Distiller. For this, you'll need an Integrated Development Environment (IDE) that supports Python, such as the free Visual Studio Code from Microsoft.

Install Distiller on your development PC. Without a licence, Distiller will run in viewer mode, but this will still install the embedded copy of Python and the various 3rd party libraries. Once you've done that, tell your IDE to use the version of Python installed with Distiller.

Here's an example of how to do that in Visual Studio Code

As an example of the steps involved in, and the utility of, creating a custom report, we'll write a report to calculate absolute protein intensity using the top-3 method.

This is known as "Average" label free quantitation in Distiller and is an absolute quantitation method similar to iBAQ

The protein intensity is calculated from the average of the intensities of the 3 most intense peptides matching a protein. The observation from the original paper was that the average MS signal for the three most intense tryptic peptide/mole of protein is constant within Coefficient of Variation of \pm 10%

Average quantitation is label-free in Distiller, but there's no reason you couldn't calculate it for other quantitation techniques.

Once we've setup our IDE, we can start work on the report itself. As mentioned earlier, a report in Mascot Distiller is comprised of two files – the actual Python .py source file for the report and an XML file which defines the report inputs and Wizard for the Distiller GUI.

Starting with the XML file, here, we're telling Distiller where to put the report on the menu tree – in this case in a subfolder called Custom

And here we're telling Distiller that our report will support all quantitation methods.

This is telling Distiller it will produce a CSV file and sets the number of sequence databases searched to a variable called databaseCount

A separate section in the XML can then be used to define the Wizard to display in the GUI. This can be used to capture input and settings information from the user before running the report.

Here we're defining the landing page for the Wizard – this should define some welcome text to explain to the user running the report what it is going to calculate.

Example: Top-3 Protein In	tensity
<pre><page title="Peptide selection criteria"></page></pre>	ether the n peptides ence) or whether to he sequence (unique_mr), e and modifications
in Peptide selection criteria <pa< td=""> The selection type determines whether the n peptides must have different sequences (unique_sequence) or whether to accept different modification states of same sequence (unique_mn), or even to accept peptides with same sequence and modifications in different charge states (unique_mz) Selection type Unique sequence V/P Unique sequence Vinique Mr Unique M/Z</pa<>	<pre>Text> tion type" type="select"> tring="Unique sequence" "Unique Mr"/> zard page with a drop-down e user chooses the rule for ntense peptides</pre>
ABack Next > Cancel MASCOT : Distiller custom reports © 2024 Matrix Scient	MATRIX

Here we're defining an actual input page with a parameter. In this case, we're defining a drop-down selection control where the end user will set the criteria for selecting the top-3 most intense peptides.

The default is Unique Sequence – where different charge and modification states of the same peptide are treated as a single match. Selecting Unique Mr would mean different modification states are counted as separate peptide matches, while Unique m/z means the different charge and modification states of the same peptide sequence are treated as different matches.

Here's the Wizard page defined by that XML displayed in Distiller. We can define as many input pages as required to capture the inputs for our report. Entered values are then output to the Python script as comma separate values.

Once we've defined our inputs in the XML, we need to create our Python report file. This is a standard Python script – we're using Mascot Parser to access the search results, and also some useful script libraries we've provided to help with loading and formatting the data. You'll need to be familiar with the Python 3 programming language to create your own reports, and also spend a bit of time getting to know Mascot Parser and any other libraries you want to use.

Here we're looking at a snippet of the code involved in calculating the top-3 protein intensity - a slightly different method being required depending on the quantitation method used in Mascot and Distiller.

It's a bit beyond the scope of a presentation like this to run through all of this, but you can find a detailed tutorial pdf on our public website here:

File Home Share View	Move Copy to * Copy to * Copy to * Copy	New Item *	Copen - Select all Copen - Select all Copen Select Copen Select	ion
parameters PXD001385 - label free spiked in PXD001385 - label free spiked in Deshtop Documents Downloads Music Pictures Videos videos	Name ^ ≩ top-3.py top-3.py.xml	Date modified 2024-03-13 1508 2024-02-27 08:02	Type Size Python File XML Document	177.KB 7 KB

The name of your XML file should be the same as the Python .py report script with .XML appended to the end. When both files are written, copy them into the c:\ProgramData\Matrix Science\Mascot Distiller\reports directory and restart Mascot Distiller – your new report should now appear in the Analysis->Reports menu in Distiller in the subfolder that you've specified in the XML.

Note, the ProgramData folder is hidden in Windows by default, but if you type the path into the navigation bar in Explorer, it will open.

Once you've copied the files into place and restarted Distiller, you can update the Python file without restarting Distiller, but changes to the XML file may require Distiller to be restarted in order to take effect.

Let's use our new report on an example dataset. We've taken two files from the following dataset in the PRIDE repository. This is a benchmarking dataset, where we have a background of human proteins from a HeLa extract at 1:1, and then a series of samples where E.coli protein extracts were spiked in at 3ng, 7.5ng, 10ng and 15ng. We took two of the files, one of the 15ng and the matched 3ng file, processed them with Mascot Distiler 2.8 and search against the Uniprot Ecoli proteome with Mascot 2.8, before running quantitation in Distiller using the "Replicate" LFQ method (which enabled 'match between runs' type behaviour)

Exa	ample	e: Top-3 Protei	n Intensi	ty
Run Top 3 prot	ein intensity repo 👯 Run Top 3 p	• tein intensity report	×	-
This report generat using the top-3 me	Peptide se	ect 🤹 Run Top 3 protein intensity report		×
	(unique_sequer (unique_mr), or charge states (i Selection type	96% Cancel		
	T 0		Sack	Finish Cancel

Here's our complete Wizard, as defined by the report XML file. When we're ready, click 'Finish' on the final page and Distiller will run the report. When it completes, the generated CSV file will be automatically opened in our spreadsheet application (Excel in this case)

— — •			. T -	3 PU	A018	2239200.891	12044343.21	(2.23072	· • • • •			
– Fy	ar	nnle	• T	4 P0	A6F5	3862223.221	19611683.58	6 5.07782	zitv			
	(GI	ipic	• • •	5 P0	A853	14897097.82	93906788.17	6.30369	JICY			
X071			-	6 P6	9910	6099398.082	36396320.18	6 5.96719)	100		
			2 800 MAX	7 P2	5553	2526508.294	11994397.23	4.7474	2	fanaling 🕤 🖽		
A CH	Celler	-[n -] K K =	= = e- en	8 P0	A6P9	3071706.12	11567026.99	3.76566	9 🕀 🐜 🖬 🤇	E Aprolate - Arr D	•1	
Pacto of Fooriat Painton	H T U -	(□ - <u>Δ</u> - <u>Δ</u> - □	= = ± ± ± ±	9 P0	A6F3	2862017 603	15781932 53	(5.51426	lesset Datate Forest	Case - Sort & Find &	646.95	
Deterrit 5	1	fee S	Mynad	10 00	ACE0	2264200 772	12/19/01/02:05	5 70185	2 Cells	tanny	Antini	-
AL AL	1 A 1	C D	4	11 00	ACT0	2304333.772	9527210.017	2 91/20	A THE WORK	W	2 I A	A.B. 14
Project file	DADistillar_Te DADistillar_Te	nt_Data/PRIDE/PXD001385 - nt_Data/PRIDE/PXD001385 -	label free spiked in\At IQ/n: bekigs ent frees	10 00	A755	22555555.556	3327218.917	4 2007				
Marcot seach result Raw file 2	http://robin/m D:\Distiller Te	nascot/cgi/mastar_vesults_2 ut_Data/PRIDE/PRODE385	of/file=/data/383405 label free spiked in\QI	12 P0	AEES	1639758.245	/8/2069.925	4.0007	npeplare7			-
Mascot search result .	1 Mtg://cobin/m	eacot/cgv/inaster_results_2	e#?58e=_/6#18/202405	13 P0	A9B2	42590229.99	40128280.69	0.94219	rosplerw7			
1	Accession 1 P02925	Sintensity 15 intensity 8344003.322 4353832.5	Description Ribose import bindin	14 P0	A6M8	1474919.84	7000709.862	4.74650	2		-	
i d	3 P00687 3 P048/8	9435427.097 40599271.48 5239566.891 12044343.21	Elifongation factor Ta 3 Chapetone protein D	15 P1	5639	259636.2359	180836 Med	dian		5.244609758		
1 2	4 POASP5 5 POAS35	3862223.221 19611883.54 1489.7097.82 91006.788.1	1.90 kDa chaperonin 05 Thystophanale 05-65	16 P0	AET2		Mea	an		5.424936638		
3	6 P69900 7 P25553	00113398.042 30396120.31 2520508.294 11094297.22	Chitemate decerbory	17 P0	AFH8	2443699.351	130208					
1	a POASPa	8071706.12 11567026.94 360217.603 15287632.51	Explane OliciFacherich	18 D0	A E08	7370965 922	28827772 29	5 269014	1			
1	ID POACES	2364399.772 13483470.64	DNA-binding protein	10 PU	ALUO	1370303.322	30037723.23	, 0.00557				
1	2 POAIES	1639758.245 7072043.925	D-galactone-binding p	19 PO	A9P0	195974.2621	1/25665.215	8.80557.				
3	a POARAZ	42590229.99 40138280.61 1474919.84 7000705.86	Engation factor 6.0	20 P3	6683	820286.6897	1643922.446	2.00408	3			
2 3	5 PISEPS 6 PDAETZ	255636.2339 1808382.283	Acid stress chaperone	21 P0	A763			1				
4 1	7 PDATHS	2443099.131 13005820.85	Ormotically-Inductor	22 DO	A 8 2 5	9/18/8 136/	3774356 65	4 00739	1			
	# PGASPE	185974.3621 1725665.215	i Dihydrali poyl dehydr	22 FO	A025	170604.0050	4767045.070	4 0.00050				
8 3	1 P04765	825285.6897 1643922.444	Nucleositie diphosph	23 PO	A9D8	1/8604.2252	1/6/915.072	, 9.89850	0			
9	2 PGA825 3 PGA926	541545.1364 5774356.85 176604.2252 1767915.072	Serine hydroxymethy 123,43-tetrahydroxyr	24 P0	A6Z3	164093.6928	1584864.568	(9.65829)	L			
5	N POAS23	164593.8930 1564961.58	Chaperone protein H	25 P0	AG67	627746.064	3523932.574	3 5.61362	3			
8	5 P06300	1365890.431 7413016.768	i isocirate dehydroger	26 00	8200	1265800 421	7412016 700	1 5 42724				
H 3	7 P61585	2582161.127 15250001.26 042845.5403 3001832.043	Malate dehydrogenal SussinaleCnA ligane	20 00	8200	1305890.431	/413010./68	3.42724.	L			
4 3	POASP3	3030813.943 6103657.883	Elongation facture To C	27 P6	1889	2382161.127	13230101.26	5.55382	3			
8	U. POA862	1558708.853 9504826.389	This percentase OS+	28 P0	A836	641845,5403	3881932.047	6.04807	3			
pregnerik	1.0po 11			2010		0.10.0.0400	100010021047		-			
and Containing in	www.aper	· · · · · · · · · · · · · · · · · · ·						_	Strang beta	w 圖圖 题 巴	- t t	1629

And here's our generated report – at the top we have some basic header information about the raw files and search results. Below that is our table of results, with calculated intensity values for the 3ng and 15ng samples. Within Excel you could calculate relative abouts of each protein against any control protein of known amount, or to the total intensity of all proteins etc. In this case, we have values for one of the 3ng Ecoli and 15ng Ecoli samples – so the protein intensities for the 15ng sample should be 5x greater than the intensities from the 3ng sample – obviously, I could have had the report calculate the ratio, but it's very easy to do in Excel.

So, there's a bit of spread (as you'd expect), but overall, those look like pretty good numbers – as confirmed by the Median and Mean ratios for the dataset.

Exa	amp	le: To	p-3 Prote	in In	tensity	
Accession	3 intensity 15	intensity [2 (BAC	group 1	15 iBAO group 1	
1 P02925	8248083.222	43919832.8 5.324853	N	Block T	N N	
POCE47	9435427.097 4	8599271.48 \$ 5.150723	IN	2200702.42	10040467 70	5 7020575
POA6Y8	5239566.891 1	2044343.21 (2.298729		2390783.43	13849467.72	5.7928575
1 P0A6F5	3862223.221 1	9611683.58 € 5.077822		2011802.189	11224162.67	5.579158196
5 P0A853	14897097.82 9	3906788.17 1 6.303697		518329.6591	1827751.884	3.526234418
P69910	6099398.082 3	6396320.18 (5.967199		555225.1157	3706773.394	6.676163035
P25553	2526508.294 1	1994397.23 4.74742		3672792.685	19143151.53	5.212151399
POA6P9	3071706.12 1	1567026.99 3.765669		1153734.867	8094820.304	7.016187633
POA6F3	2862017.603 1	5/81932.53 (5.514208		301605 2498	2102930 57	6 972460101
PUACEU	2304399.772 1	517510 017 [3,81/120		457546 4212	1002260 640	4 122000722
POAFE5	1639758 245 7	872069 925 1 4.80075		437340.4313	1075308.049	4.130030730
POA9B2	42590229.99 4	0128280.69 (0.942195		524048.4804	3549842.56	0.773881985
P0A6M8	1474919.84 7	000709.862 4.746502		425627.1265	1853142.681	4.353911125
P15639	259636.2359 1	808362.283 6.964984		294340.3663	1549671.823	5.264897378
P0AET2		1		5299575.039	6322915.346	1.19309856
P0AFH8	2443699.351 1	3020820.85 6 5.328324		113253.0252	780076.9473	6.887912674
P0AE08	7370965.922 3	8837723.29 / 5.269014		701502.4783	3661454.118	5.219445735
P0A9P0	195974.2621 1	725665.215 🕻 8.805571		1761302.925	9272864.757	5,264775652
P36683	820286.6897 1	643922.446 / 2.004083		18965 25117	239689 3276	12 63834185
dian		5 244609759		MEAN	7 220162072	3 204889906
an		5 424926628			6.450925219	7 619835061
an		3.424330038		WEDIAN	6.459825218	14 52126271
P0AG67	627746.064 3	523932.574 5.613628		30314./1822	445420.4385	14.35130271
P08200	1365890.431 7	413016.768 5.427241		10942.0411	186900.4898	17.08095301
P61889	000004 C4 407 4			44446.7141	432398.3933	9.728467044
P0A836	op 3				iBAQ 1558476.748	8.918392767
SCO	T : <i>L</i>	Distiller c	Istom reports © 20	24 Matrix Scie	nce	MA

How does that compare to another technique such as iBAQ? Well, looks like the ratio of the iBAQ values for these proteins aren't bad, but they're actually a bit too high, as shown by the Mean and Median ratios. So, in this case Top-3 has out performed iBAQ and is a simpler calculation to boot. Unlike iBAQ you don't need the protein sequence – you could calculate it yourself very easily in a spreadsheet with just the protein's peptide intensity values.

While top-3 has done better in this instance, that isn't always the case of course. In general both techniques perform similarly, and generally surprisingly well. The main disadvantage of top-3 compared with iBAQ is the requirement for 3 distinct peptide matches to calculate the average intensity from – iBAQ allows you to calculate intensities for proteins with fewer distinct matches – which may be why top-3 out performs iBAQ here; we're only using the most intense peptides in the calculation.

Mascot Distiller 2.8 ships with 14 standard reports. These cover many use cases, but they can't cover every type of analysis you could ever want to carry out.

Reports are written in Python – this is a commonly used programming language for data analysis and it has many powerful libraries available to help with that.

Unlike in earlier versions of Distiller, we're using a fully function programming language for reporting. That means you could get very creative with your reports – for example, you could download protein interaction data from the EBI's IntAct database and incorporate that into a report, or you could call another tool, carry out some downstream analysis and then incorporate that into a report.

Finally
Tutorial: Creating custom reports in Mascot Distiller
https://www.matrixscience.com/blog/tutorial-creating- custom-reports-in-mascot-distiller.html
Includes links to a tutorial PDF and zip file with the report source code and XML
Creating_a_custom_Distiller_report.pdf
MASCOT : Distiller custom reports © 2024 Matrix Science MATRIX SCIENCE

Finally, you can find a blog article about this here

A detailed tutorial pdf about creating the top-3 report here

And the Python source code and XML file for the report can be downloaded from here